Algorithms and Data Structures

Amortized Analysis

Marius Kloft




e Two Examples

e Two Analysis Methods
e Dynamic Tables

e SOL - Analysis

e This lecture is not covered in [OW93] but in [Cor03]

Marius Kloft: Alg&DS, Summer Semester 2016




Setting

e SOL setting: Dependent operations

— We have a sequence Q of operations on a data structure
e Searching SOL and rearranging a SOL

— Operations are not independent — by changing the data structure,
costs of subsequent operations are influenced

e Conventional WC-analysis produces misleading results
— Assumes all operations to be independent
— Changing search order in a workload does not influence WC

e Amortized analysis analyzes the complexity of any
sequence of operations of length n
— Or the worst average cost of each operation in any sequence

Marius Kloft: Alg&DS, Summer Semester 2016 3



Example 1: Multi-Pop

e Assume a stack S with a special op: mpop(k)
e mpop(k) pops min(k, |S|) elements from S
e Assume any sequence Q of operations
— E.g. Q={push,push,mpop(k),push,push,push,mpop(k),...}
e Assume costs c(push)=1, c(pop)=1, c(mpop(k))=k
— mpop simply calls pop k times
o With |Q|=n: What cost do we expect for Q?
— Every op in Q costs 1 (push) or 1 (pop) or k (mpop)
— In the worst case, k can be ~n (n times push, then one mpop(n))

— Worst case of a single operation is O(n) \
— Total worst-case cost: O(n2)

Note: Costs only ~2*n

Marius Kloft: Alg&DS, Summer Semester 2016 4




Problem

e Clearly, the cost of Q is in O(n2), but this is not tight

e A simple thought shows: The cost of Q is in O(n)

— Every element can be popped only once (no matter if this happens
through a pop or a mpop)

— Pushing an element costs 1, popping it costs 1

— Within Q, we can at most push O(n) elements and, hence, also only
pop O(n) elements

— Thus, the total cost is in O(n)

e We want to derive such a result in @ more systematic
manner (analyzing SOLs is not that easy)

Marius Kloft: Alg&DS, Summer Semester 2016 5



Example 2: Bit-Counter

e We want to generate all bitstrings produced by iteratively
adding 1 n-times, starting from O

00000000

— A single operation can flip up to k bits 00001001
e "1111111" +1 00001010

— Worst case cost for Q: O(k*n)

Marius Kloft: Alg&DS, Summer Semester 2016 6

e Qs a sequence of ,+1" 00000001 | 1 | 1
e We count as cost of an operation 00000010 | 2 | 3
the number of bits we have to fli L
p 00000100 3 7
e (Classical WC analysis 00000101 | 1 | 8
— Assume bitstrings of length k 00000110 | 2 | 10
00000111 1 |11
_ - i k-

Roll-over counter if we exceed 2*-1 o010 a4 1=

1

2




Problem

e Again, this complexity is overly pessimistic / not tight

e Cost actually is in O(n)
— The right-most bit is flipped in every operation: cost=n
— The second-rightmost bit is flipped every second time: n/2
— The third ...: n/4

— Together

Marius Kloft: Alg&DS, Summer Semester 2016




e Two Examples

e Two Analysis Methods
— Accounting Method
— Potential Method

e Dynamic Tables
e SOL - Analysis

Marius Kloft: Alg&DS, Summer Semester 2016



Accounting Analysis

e Idea: We create an account for Q
e Operations put / withdraw a constant amount of "money

e We choose these amounts such that the current state of
the account is always (throughout Q) an upper bound of
the actual cost of Q

— Let ¢; be the true cost of operation i, d. its effect on the account

— We require k K
vi<sk<n:) ¢ <> d
=1 =1

— Especially, the account must never become negative (or the
inequality at this point is broken)

e [t follows: An upper bound for the account (d) is also an
upper bound for the true cost (c)

Marius Kloft: Alg&DS, Summer Semester 2016 9

n



Application to mpop

e Assume d, =2, d;,,=0, d,0,=0
e (learly, the account can never become zero

e Summing these up yields an upper bound on the real cost
— Clearly, d,, is an upper bound on ¢, (Which is 1)

— Idea: Whenever we push an element, we pay 1 for the push and 1
for the operation that will (at same later time) pop exactly this
element

e It doesn’t matter whether this will be through a pop or a mpop

— Thus, when it comes to a pop or mpop, there is always enough

money on the account (deposited by previous push’s)

e This proves: Zn:ci < idi <2*ne0O(n)

=1 =1

Marius Kloft: Alg&DS, Summer Semester 2016




Choose d's carefully

e Assume d, =1, d;,,=1, d;pop=1
— Assume Q={push,push,push,mpop(3)}
— >c=6>%d=4
e Assume d, =1, d;,,=0, d,0,=0
— Assume Q={push,push,mpop(2)}
— >c=4>3d =2
e Assume d, ,=3, d,,,=0, dpyp0p=0
— Fine as well, but not as tight (but also leads to O(n))

Marius Kloft: Alg&DS, Summer Semester 2016

11



Application to Bit-Counter

e Look at the sequence Q' of flips
generated by a sequence Q

— For every +1, we flip exactly once from 0
to 1 and perform a sequence of flips from
1to 0

e There is no ,flip to 1" if we roll-over

Marius Kloft: Alg&DS, Summer Semester 2016

00000000

00000001 1 1
00000010 2 | 3
00000011 1 | 4
00000100 3|17
00000101 1 | 8
00000110 2 |10
00000111 1 |11
00001000 4 | 15
00001001 1 |16
00001010 2 | 18

12



Application to Bit-Counter (Continued)

e Assume dg;, ,1=2 and dg;p.40-0=0

Clearly, dgp.to-1 1S @an upper bound to Cgp.to-1

Idea: When we flip-to-1, we pay 1 for
flipping and 1 for the back-flip-to-0 that
might happen at some later time in Q’

As we start with only 0 and can backflip
any 1 only once, there is always enough
money on the account for the flip-to-0’s

Thus, the account is an upper bound on
the actual cost

e As every operation in Q can pay at
most 2 (there is at most 1 flip-to-1), Q
is in O(n)

Marius Kloft: Alg&DS, Summer Semester 2016

00000000

00000001 1 1
00000010 2 | 3
00000011 1| 4
00000100 3|7
00000101 1| 8
00000110 2 |10
00000111 1 |11
00001000 4 |15
00001001 1 |16
00001010 2 | 18

13



e Two Examples

e Two Analysis Methods
— Accounting Method
— Potential Method

e Dynamic Tables
e SOL - Analysis

Marius Kloft: Alg&DS, Summer Semester 2016



Potential Method: Idea

e In the accounting method, we assign a cost to every
operation and compare aggregated accounting costs of ops
with aggregated real costs of ops

e In the potential method, we assign a potential ®(D) to the
data structure D manipulated by Q

e As ops from Q change D, they also change D’s potential

e The trick is to design ® such that we can (again) use it to
derive an upper bound on the real cost of Q

Marius Kloft: Alg&DS, Summer Semester 2016




Potential Function

e Let D, Dy, ... D, be the states of D when applying Q

e We define the amortized cost d; of the i'th operation as
di = ¢ + (D) - ®(D,,)

o We then can derive the amortized cost of Q as

>4, = (0 +4(D)-4(D, ) = Y. +4(D,)~4(D,)

e Rough idea: If we find a ® such that (a) we obtain
formulas for the amortized costs for all individual d; and (b)
®(D,)=d(D,), we have an upper bound for the real costs

Marius Kloft: Alg&DS, Summer Semester 2016




Details: Always Pay in Advance

e Operations raise or lower the potential (~future cost) of D
e We need to find a function ® such that
— 1: ®(D,) depends on a property of D,
— 2: O(D,)=d(D,) [and we will always have ®(D,)=0]
— 3: We can compute d; = ¢; + ®(D,) — ®(D,_,) for any possible op
e As within a sequence we do not know its future, we also
have to require that ®(D,) never is negative

— Otherwise, the amortized cost of the sequence Q[1-i] is no upper
bound in the real costs

e Idea: Always pay in advance

Marius Kloft: Alg&DS, Summer Semester 2016

17



Example: mpop

e We use the number of objects on the stack as its potential

e Then
— 1: ®(D,) depends on a property of D,
— 2: ®(D,)=®(D,) and ®(D,)=0
— 3: Compute d. = ¢ + ®(D,) — ®(D._,)
e Ifopispush:d,=¢c+1=2
e Ifopispop:d=¢-1=0

e If op is mpop(k): d; = ¢, — #elements_taken_from_stack = 0

N
e.g., both equaling k if at least k

elements are on stack

e Thus, 2*n = 2d, = ¢, and Q is in O(n)

Marius Kloft: Alg&DS, Summer Semester 2016




Example: Bit-Counter

e We use the number of ‘1’s in the bitstring as its potential

e Then

— 1: ®(D,) depends on a property of D,
— 2: ®(D,)=®(D,) and ®(D,)=0
— 3: Compute d; = ¢, + ®(D,) — ®(D._,)

e Thus,

Let the i'th operation incur one flip to 1 (or no flip to 1 if roll-over)
and t, flips to 0

Thus, ¢, <t +1
If ®(D;)=0, the this op has flipped all positions to 0, and previously
they were all 1 and we had ®(D,;)=k

In both cases, we have ®(D;) < ®(D;,)-t+1

2*n =2 2d; = 2¢; and Q is in O(n)

Marius Kloft: Alg&DS, Summer Semester 2016




e Two Examples

e Two Analysis Methods
e Dynamic Tables

e SOL - Analysis

Marius Kloft: Alg&DS, Summer Semester 2016



Dynamic Tables

e We now use amortized analysis for something more useful:
Complexity of operations on a dynamic table

e Assume an array T and a sequence Q of insert/delete ops

e Dynamic Tables: Keep the array small, yet avoid overflows
— Start with a table T of size 1

— When inserting but T is full, we double |T|; upon deleting and A is
only half-full, we reduce |T| by 50%
— "Doubling”, “reducing” means: Copying data to a new location
— If the i'th operation is a insertion (or deletion), it costs either 1 or i
(depending on whether or not the array is full)
e Conventional WC analysis
— As i can be up to n for |Q|=n, the complexity of insertion is O(n)

— Complexity of any Q is O(n2)

Marius Kloft: Alg&DS, Summer Semester 2016 21



Example

insert

insert

insert; insert

insert; insert; insert

delete;delete;delete

delete

Marius Kloft: Alg&DS, Summer Semester 2016

22



1: ®(D,) depends on a property of D,
. . 2: ®(D,)=0(D
With Potential Method |5 §o%5 o) - 0.

e Let num(T) be the current number of elements in T
e We use potential ®(T) = 2*num(T) - |T|

— Intuitively a “potential”

 Immediately before an expansion, num(T)=|T| and ®(T)=|T|, so there
is much potential in T (we saved for the expansion to come)

e Immediately after an expansion, num(T)=|T|/2 and ®(T)=0; all
potential has been used, we need to save again for the next expansion
— Formally
e 1: Of course

e 2: As T is always at least half-full, ®(T) is always =0
We start with |T|=0, and thus ®(T,)-®(T,)=0

Marius Kloft: Alg&DS, Summer Semester 2016



1: ®(D,) depends on a property of D,
2: ©(D,)=d(D,)

Continuation

e 3: Let'sstudy d. = c¢ + ®O(T,)) — O(T,_,) for insertions
e Without expansion

d =1+ (2*num(T)-[T;]) - (2*num(T;_;)-|T4])
=1+ 2*num(T,)-2*num(T,;) - |T;| + |T;4]
=14+2+4+0
=3

e With expansion

d; num(T;) + (2*num(T)-[T;[) - (2*num(T;_;)-|T4])
num(T;) + 2*num(T;) - | Ti - 2%num(T-1) +  |T-1|

3*num(T)) - 2*num(T,) + 2 - 2*num(T,) + 2 + num(T,)) -1
=3

num(T;) + 2*num(T;) - 2*(num(T,)-1) - 2*(num(T;)-1) + num(T,;)-1

e Thus, 3*n = 2d. = 2¢; and Q is in O(n) (for only insertions)

Marius Kloft: Alg&DS, Summer Semester 2016

24



Intuition

e Consider accounting method

e For insert’, we deposit 3 because
— 1 for the insertion (the real cost)

— 1 for the time that we need to copy
this new element at the next

expansion
e These 1’s fill the account with |T;|/2

before the next expansion

— 1 for one of the |T,|/2 elements
already in A after the last expansion

e These fill the account with |T;|/2
before the next expansion

e Thus, we have enough credit at
the next expansion

Marius Kloft: Alg&DS, Summer Semester 2016



Problem: Deletions

e Our strategy for deletions so far is not very clever
— Assume a table with num(T)=|T]|
— Assume a sequence Q ={I,D,I,D,I,D,I ...}
— This sequence will perform |T|+|T|/2+|T|+|T|/2+ ... real ops
— As |T| is O(n), Q is in O(n?) and not in O(n)

e Simple trick: Wait until num(T)=]|T|/4, then reduce T by
50%
— Leads to amortized cost of O(n) for any sequence of operations
— We omit the proof (see [Cor03])

Marius Kloft: Alg&DS, Summer Semester 2016

26



e Two Examples
e Two Analysis Methods
e Dynamic Tables
e SOL — Analysis
— Goal and idea

— Preliminaries
— A short proof

Marius Kloft: Alg&DS, Summer Semester 2016



Re-Organization Strategies

e Think of self-organizing lists again
e When searching an element, we change the list L
— As usual: Accessing the i'th element costs |

e Three popular strategies

— MF, move-to-front:
After searching an element e, move e to the front of L

— T, transpose:
After searching an element e, swap e with its predecessor in L

— FC, frequency count:
Keep an access frequency counter for every element in L and keep
L sorted by this counter. After searching e, increase counter of e
and move “up” to keep sorted’'ness

Marius Kloft: Alg&DS, Summer Semester 2016



Notation

e Assume we have an arbitrary strategy A and a sequence S
of accesses on list L

e After accessing element i, A may move i as follows

— Consecutive swaps of i with (adjacent) predecessor (toward front)
or successor (toward back)

— Only swap i (multiple times), do not swap (j,k) with j#i and k#i

— When using strategy A, let F,(I) be the number of front-swaps of i
and X,(l) the number of back-swaps of i in step |

e This means: Fy/Xye for strategy MF, F1/X; ... Fee/Xee
e Of course, VI: Xye(D)=X:(1)=X(1)=0

e Let C,(S) be the total access cost of A incurred by S
— Again: Cy for strategy MF, C; for T, C for FC

e Conventional WC analysis gives YA: C,(S) is in O(|S|*|L|)

Marius Kloft: Alg&DS, Summer Semester 2016 29



Theorem

e Theorem (Amortized costs)

Let A be any self-organizing strategy for a SOL L, MF be
the move-to-front strategy, and S be a sequence of
accesses to L. Then

Gie(S) S 2%G(S) + Xo(S) = Fa(S) - /S]
e \What does this mean?

— We don't learn more about the absolute complexity of A / MF
— But we learn that MF is quite good

— Any strategy following the same constraints (only series of swaps)
will at best be roughly twice as good as MF

e Usally X,(S)=0

— Despite its simplicity, MF is a fairly safe bet in whatever
circumstances (= sequences)

Marius Kloft: Alg&DS, Summer Semester 2016




Idea of the Proof

e We will compare access costs in L using MF and any A

e Think of both strategies running S on two copies of the
same initial list L

o After each step, A and MF perform different swaps, so all
list states except the first very likely are different

e We will compare list states by looking at the number of
inversions (“Fehlstellungen”)
— Actually, we shall only analyze how the number of invs changes

e We will show that the number of inversions defines a
potential of a pair of lists that helps to derive an upper
bound on the differences in real costs

Marius Kloft: Alg&DS, Summer Semester 2016

31



Content of this Lecture

e Two Examples
e Two Analysis Methods
e Dynamic Tables
e SOL - Analysis
— Goal and idea

— Preliminaries
— A short proof

Marius Kloft: Alg&DS, Summer Semester 2016

32



Inversions

e LetL and L' be permutations of the set {1, 2, ..., n}
e Definition

— An unordered pair {i,j} is called an inversion of L and L' iff i and j
are in different orderin L thaninL'(for1 </ <j<n)

— The number of inversions between L and L' is written inv(L, L’)

e Remarks
— Different order: Once i before j, once i after j

— Obviously, inv(L, L) = inv( L', L)

e Examples: inv( (1,2,3), (2,3,1) ) = |{ {1,2}, {1,3} }| =2
— inv( (1,...,n), (n,...,1)) = n(n-1)/2

e Without loss of generality, we assume that L=(1,...,n)

— Because we only look at changes in humber of inversions and not at
the actual set of inversions

Marius Kloft: Alg&DS, Summer Semester 2016 33



Sequences of Changes

e Assume we applied |-1 steps creating Ly using MF and
L, using A
e Let us consider the next step |, creating Ly" and L,’

AB(cl. ... 1.].1.].]. aBlcl. |10 0.].].].].].
l l }.-1

L, |B A C Lur |- (B cl.|.].]A].
A 4 . }1

Ly |B[.|A C Ly |Al.1B.].].1c[.].].].

Marius Kloft: Alg&DS, Summer Semester 2016




Inversion Changes

e How does | change the number of inv’'s between Ly / L,?
e Can we compute inv(Lye, L) from inv(Lyg, La)?

— Assume step | accesses element i from L,

— We may assume it is at position i

— Let this element i be at position k in Ly,

— Access in L, costs i, access in Lye costs k

— After step I, A performs an unknown number of swaps; MF
performs exactly k-1 front-swaps

Ly [1]2(3].].].].].]]

‘ Tpositioni position k | ,,
? A R A I I A T T

Marius Kloft: Alg&DS, Summer Semester 2016



Counting Inversion Changes 1 Y X,

Lo (12[3].[.].[.].[i].].]-].].
e Let X; be the set of values
that are before position k in Lve e [ Lo Lo Lo [0 L]
Lye and after position i in L, T

e lLeY,; be the values before position k in Ly and before i in L,
— Clearly, |X| + |Y,| = k-1

e All pairs {i,c} with ceX: are inversions between L, and Ly
— There may be more; but only those with i are affected in this step

o After step |, MF moves element i to the front
— Assume first that A does simply nothing
— All inversions {i,c} with ceX: disappear (there are |X,| many)
— But |Y,|=k-1-|X| new inversions appear
— Thus: inv(Lye,Ly") = inv(Lye La) - [X] + k-1-]X|]
— But A does something

’

LMF Pl o]l ]

Marius Kloft: Alg&DS, Summer Semester 2016




Counting Inversion Changes 2

e Instep |, let A perform F,(I) .

front-swaps and XA(I) VTSN I O I I IO IO I O IO I O I I
back-swaps

e Every front-swap (swapping i before any j) in L, decreases
inv(Lye,La") by 1

— Before step |, j must be before i in L, (it is a front-swap) but after |
in Ly (because i now is the first element in Ly")

— After step |, i is before j in both L, and Ly’
e Equally, every back-swap increases inv(Ly:',L,") by 1
e Together: After step |, we have
inv(Lye',La") = inv(LygLa) - \|X|| + I<'1'|X||} '\FA(I) T XA(I)}

\

J
| [ |
Before step | through MF through A

Marius Kloft: Alg&DS, Summer Semester 2016 37



Was ¢ ... was d, ... we switch to OW notation

Amortized Costs

e Let ¢ be the real costs of strategy| MF for step |
e We use the number of inversions @s potential function
O(L,, Lywe)=inv(L,!, Ly) on the paitt Ly, Lyr
e Definition |
— The amortized costs of step |, called d, are
a = ¢ + inv(Lj, Lyd) —inv(LI%, Lyd?)
— Accordingly, the amortized costs of sequence S, /S/=m, are
20, =53¢+ iInv(Ly", Lyd") —inv(L,%, Ly®)
e This is a proper potential function
— 1: ® depends on a property of the pair L, Lye
— 2:inv() can never be negative, so ®(L,",Ly") = O(L,L)=0
e Let's look at how operations change the potential

Marius Kloft: Alg&DS, Summer Semester 2016




Content of this Lecture

e Two Examples
e Two Analysis Methods
e Dynamic Tables
e SOL - Analysis
— Goal and idea

— Preliminaries
— A short proof (after much preparatory work)

Marius Kloft: Alg&DS, Summer Semester 2016




Putting it Together

e We know for every step | from S accessing i:
invV(Lyue,La") = inv(Lyg,La) = [X] + k=1-]X] - FoCl) + Xa(l)
and thus
inV(Lye',La") - Inv(Lye La) = -IX[+k-1-[X]| - Fa(l) + Xa(l)
e Using the fact that ¢,=k for MF, we get amortized costs of
d = ¢ +inv(Ly, Lue) — inv(La, Lyg)
= k- X[ +k-1-[X| - Fa(l) + X,(1)
= 2(k-IX|]) - 1 - Fa(1) + X,(1)
e Recall that |Y,|=k-1-]|X|| are those elements before i in both
lists. This implies that k-1-|X;| < i-1 or k-|X|| <i
— There can be at most i-1 elements before position i in L,
e Therefore: d, < 2i -1 - Fy(l) + X,(I)

Marius Kloft: Alg&DS, Summer Semester 2016




Putting it Together

e This is the central trick!

e Because we only lookey at inversions (and hence the
sequence of values), we¢an draw a connection between
the value that is accessed and the number of inversions
that are affected

e Therefore: d, < 2i -1 - Fy(l) + X,(I)

Marius Kloft: Alg&DS, Summer Semester 2016 41



Aggregating

e We also know the cost of accessing i using A: that's |
e Together: d, < 2C,(I) - 1 - FA(l) + X,(1)
e Aggregating this inequality over all a, (hence S), we get
>d, < 2*C,(S) — |S| = FA(S) + X,(S)
e By definition, we also have
>d, = 2¢ + inv(Ly,™, Lye™) — inv(L,°, Lye%)

e Since ¢, = Cy(S) and inv(L,°, LyL)=0, we get

Cur(S) +inv(Ly™, Lye™) < 2*CA(S) — [S] = Fa(S) + Xa(S)
e It finally follows (inv()=0)

Cure(S) = 2*Cu(S) — |S| = Fa(S) + XA(S)

Marius Kloft: Alg&DS, Summer Semester 2016

42



Summary

e Self-organization creates a type of problem we were not
confronted with before
— Things change during program execution
— But not at random — we follow a strategy

e Analysis is none-trivial, but
— Helped to find a elegant and surprising conjecture

— Very interesting in itself: We showed relationships between
measures we never counted (and could not count easily)

— But beware the assumptions (e.g., only single swaps)

— Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized
efficiency of list update and paging rules." Communications of the
ACM 28(2): 202-208.

Marius Kloft: Alg&DS, Summer Semester 2016




